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Comparison between the Protein Quality of Northern Adapted
Cultivars of Common Maize and Quality Protein Maize'
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The present study was designed to quantitatively measure and compare the levels and variation of
total protein as well as the individual amino acids in three northern adapted (latitude >45° N)
cultivars of common maize, namely a typical Dent CO251, a Flint CO255 inbred line, and commercial
hybrid maize Pioneer 3953 with the new quality protein maize inbred (QPM-C13), and to assess
their nutritive value from their FAO/WHO amino acid scoring pattern. The total protein content
was variable among these cultivars ranging from 7.95% in QPM to 8.2% (Pioneer), 10.5% (Dent),
and 11.79% (Flint). The QPM maize protein, however, proved to be of higher quality than common
maize protein because it contained double the amount of lysine and arginine, higher levels of
tryptophan and cysteine, and no change in other amino acids except lower levels of leucine. As a
result, the QPM amino acid profile gives a good balance of total essential amino acids, limited only
in lysine, and has an amino acid score, adjusted for digestibility, of 67%, compared to 28.5, 31.0,
and 33.0% values found for Pioneer, Dent, and Flint, respectively. In common maize the primary
essential amino acid deficiencies include lysine, threonine, and tryptophan. These results indicate
that breeding maize for high protein quality can be very effective and that a very useful method for
evaluating the protein quality of cereals is calculating their protein quality from their amino acid
composition,
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INTRODUCTION

Maize (Zea mays L.) is a major cereal crop for both
livestock feed and human nutrition in many countries
today. Because of its economic importance, genetic
improvements of maize cultivars have played a key role
in the development of genotypes that will grow in a wide
range of environments, rainfall, and altitudes (CIM-
MYT, 1985; Hallauer, 1987; National Research Council,
1988). Further breeding studies are presently under-
way to develop more productive maize hybrids which
will germinate, grow, and mature in more northern
latitudes (latitude >45° N), which have long daylengths
(>16 h) and short growing seasons.

Attempts are also underway to further improve the
protein quality of maize cultivars. Maize proteins are
limited in certain essential amino acids, particularly
lysine (Cromwell et al., 1967, 1968; Villegas et al., 1980;
Asche et al., 1985; Bressani et al., 1990). Their protein
score, based on the FAO/WHO (1965, 1973) pattern,
indicates that lysine and tryptophan are the first and
second limiting amino acids, respectively (Bressani,
1966; Eggum and Beams, 1983). The starchy en-
dosperm of maize contains a group of four structurally
distinct alcohol-soluble proteins called zeins (Esen, 1987;
Wallace et al., 1990; Shewry and Tatham, 1990) which
are encoded by specific classes of structural genes that
belong to a large gene family clustered in several DNA
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regions (Pedersen et al., 1980; Hagen and Rubenstein,
1981; Larkins et al., 1984, 1989; Das et al., 1990; Pysh
et al., 1993). These proteins, which account for about
50% of the total endosperm protein at maturity in
common maize, are characterized by a high content of
glutamine, leucine, and proline and are practically
devoid of lysine and tryptophan. As a result, the overall
lysine and tryptophan contents (Paiva et al., 1991) of
normal maize are only 1.81 and 0.35%, respectively. The
high quality protein maize (QPM), however, contained
higher levels of lysine and tryptophan, with no major
change in other amino acids except in leucine (Bressani,
1991).

To genetically improve the quality of maize proteins,
therefore, either a reduction in the zein storage protein
fraction or an increased proportion of other protein
fractions, or a combination of the two, will be required
(Glover, 1976; Frey, 1951; Villegas et al., 1980; Soave
and Salamini, 1984; Schmidt et al., 1987; Or et al., 1993;
Habben et al., 1993). Although several endosperm
mutations have been identified that suppress the syn-
thesis of zein proteins and increase other protein
fractions affecting the quality of protein in maize (Mertz
et al., 1964; Nelson et al., 1965; Ma and Nelson, 1975;
Jones et al., 1977a,b; Soave, 1979; Salamini et al., 1983;
Larkins et al., 1984; Mertz, 1986; Graham et al., 1990;
Or et al., 1993; Aukerman and Schmidt, 1993), only the
opaque-2 mutation has been widely studied (Mertz et
al., 1964; Ortega and Bates, 1983; National Research
Council, 1988; Hallauer, 1987; Bjarnason and Vasal,
1980, 1992; Geetha et al., 1991; Messmer et al., 1992;
Damerval and De Vienne, 1993). Opaque-2 gene is a
mutation in one of the regulatory loci that control
storage protein gene transcription in maize. This
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mutant gene affects the quality of protein in maize by
reducing the synthesis of zeins (Villegas et al., 1980) in
the endosperm, thereby resulting in a significantly
increased proportion of other protein fractions that
contain higher levels of both lysine and tryptophan
(Bressani, 1991).

Since these findings several other mutants have been
identified, collectively designated high-lysine genes, all
of which control the level of zein accumulation during
endosperm development, i.e., opaque-7 (Misra et al.,
1972); opaque-6 and floury-3 (Ma and Nelson, 1975);
defective endosperm-B30 and mucronate (Salamini et al.,
1983). The primary effect or lesion of these high-lysine
mutants remains unknown; however, each of these loci
reduces zein synthesis to a different degree, ranging
from 20 to 80% reduction (Mertz et al., 1964; Nelson et
al., 1975; Salamini et al., 1983; Misra et al., 1972; Soave,
1979). Opaque-2 cultivars, however, have not proven
profitable as crops because of the soft, chalky kernel
endosperm, lower yields, and increased susceptibility to
insects, pathogens, and mechanic¢al damage.

Extensive field trials have been carried out at the
International Maize and Wheat Improvement Center
(CIMMYT) in Mexico to identify the most productive
maize cultivars, which are high in lysine and tryptophan
contents, and to change their soft opaque-2 endosperm
into a conventional hard vitreous type (Jones et al.,
1977a,b; Vasal et al., 1980; Ortega and Bates, 1983;
Bjarnason and Vasal, 1992). Through backecrossing and
several cycles of recurrent selection of maize, CIMMYT's
maize breeders have successfully combined the high-
lysine potential of the opaque-2 mutation with genetic
endosperm modifiers. Cultivars similar in yield and
other important agronomic properties to normal maize,
which still maintain high protein quality, have been
developed (National Research Council, 1988; Bjarnason
and Vasal, 1980, 1992). These new maize genotypes,
collectively called Quality Protein Maize (QPM), are
becoming of major interest to seed producers, breeders,
geneticists, and industry for their large-scale production
and for their potential advantages in human nutrition
and animal feeding. An accurate assessment of the
protein quality and nutritional adequacy of QPM is
therefore essential.

The present study was designed to quantitatively
measure and compare the levels and variation of total
protein as well as the individual amino acids in three
northern adapted maize cultivars, a typical Dent CO251
and a Flint CO255 inbred line and a commercial hybrid
maize Pioneer 3953, with the new QPM-C13 inbred and
to assess their nutritive value.

MATERIALS AND METHODS

Materials. Type DC-5A (lot no. 748) cation-exchange
spherical resin, sized to 6.0 + 0.5 mm, was purchased from
Dionex Chemical Co., Sunnyvale, CA. The amino acid stan-
dards were obtained as follows: norleucine from Pierce
Chemical Co., Rockford, IL; 3-nitrotyrosine from Aldrich
Chemical Co., Milwaukee, WI; and standard amino acid
calibration mixture from Beckman Instruments, Inc., Palo
Alto, CA. Highly purified ninhydrin and hydrindantin (Nin-
Sol AF) dissolved in sequenal grade dimethyl sulfoxide was
purchased from Pierce Chemical Co., Rockford, IL. Octanoic
acid was obtained from Eastman Kodak Co., Phillipsburg, NJ.
Hydrochloric acid (Analar), hydrobromic acid (Aristar), formic
acid (88.0%), and hydrogen peroxide (30.0%) were purchased
from BDH Inc., Poole, England. High-purity sodium hydroxide
(50.0% wi/w), which was used to prepare all buffers and
reagents, was a product of Allied Fisher Scientific, Fair Lawn,
NJ. The three highly purified microcolumn citrate buffers (pH
3.283, 0.20 M; pH 4.10, 0.20 M; pH 6.40, 1.0 M) and sample
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dilution buffer (pH 2.2, 0.20 M) recommended for high-
sensitivity single-microcolumn analysis were used as described
previously (Zarkadas et al., 1987). All other chemicals and
reagents were of the highest purity commercially available and
were used without further purification.

Experimental Procedures. Plant Material and Sample
Preparation. The three northern adapted maize inbred lines
selected for this investigation were the Dent inbred C0251,
the cold-tolerant Flint CO255, and new quality protein maize
(QPM-C13), all developed at the Plant Research Centre,
Agriculture Canada, Ottawa. Both Dent inbred CO251 and
Flint CO255 are early maturing inbreds with superior combin-
ing ability and agronomic traits, and both are well adapted to
the more northerly temperate regions of Canada (latitude >45°
N), where the low average daily temperature in May and June
ranges from 10 to 15 °C and the growing season is short.
QPM-C13 is a recent inbred, medium late maturity, in
evaluation trials. The choice of a tester adapted high-yielding
hybrid to evaluate these new lines was Pioneer 3953, which
is a single cross yellow Dent hybrid requiring 2450 corn heat
units (FAQ 150).

The first cultivar, CO251, is an orange-yellow Dent inbred,
which has been used as a male parent in a number of early
hybrids in Canada and has shown a broad general combining
ability. This inbred was developed from the backcross of
(CO109 x CO125) by CO125, with selection for both superior
combining ability and agronomic traits. The CO109 genotype
had been developed from the cultivar Early Butler, while the
CO0125 inbred was developed from Pfister 44, a northern U.S.
corn belt hybrid introduced into Canada in the 1950s. As-
sessment of the agronomic performance of CO251 was con-
ducted at short-season locations in Eastern Canada and the
breeding nursery site at Agriculture Canada’s Central Experi-
mental Farm, Ottawa, in the 1970s.

The second cultivar, a Flint inbred designated CO255, has
been used widely in as much as 50% of the silage hybrids in
several northern European countries including France, Hol-
land, and Germany. The CO255 cultivar originated from an
INRA hybrid, INRA 258, which was a four-way or double-cross
hybrid with the following pedigree: (F115 x W33)AF7 x EP1).
The origin of the parental lines of INRA 258 was as follows:
F115 is an INRA developed inbred that derived from Iowa 153
and W33, which was developed by the University of Wisconsin
from the single cross W9 x WH. W9 originated from cultivar
Golden Glow, while WH originated from the Wisconsin germ-
plasm W25. F7 was from a population grown at Lacaune, a
high-elevation region of southern France, and EP1 was from
Lizargarote, Spain. The C0255 inbred cultivar has shown an
exceptionally early low-temperature vigor and superior com-
bining ability with many corn families and has a yellow-orange
Flint kernel.

The third inbred cultivar, which is designated quality
protein maize, QPM-C13, was developed from the Northern
Temperate Zone 1 (NTR-1) QPM gene pool originated from the
International Maize and Wheat Improvement Center (CIM-
MYT). This germplasm line was subsequently inbred to the
S5 generation at the Plant Research Centre, Ottawa, and
resulted in the new QPM-C13 genotype containing the high-
lysine opaque-2 gene and modifier genes that favor improved
kernel characteristics. Agronomic performance and superior
combining ability studies on QPM-C13 and other lines were
carried out by Spaner et al. (1992) at three different locations
in eastern Canada.

Representative samples of seed of the four cultivars were
obtained from the Plant Research Centre and Pioneer Hi-Bred
International in 1991. The freeze-dried kernels were then
pulverized in a standard electrically driven end runner mill
(Cyclone Sample Mill, U. D. Corp., Fort Collins, CO), passed
through a 0.5-mm mesh seive, lyophilized, and stored at —20
°C in polypropylene bottles until used.

Preparation of Tissue Hydrolysates. Duplicate samples (50.0
mg) were hydrolyzed in Pyrex (No. 9860) test tubes (18 x 150
mm) under vacuum (below 10 mmHg) with triple-glass-
distilled constant-boiling HCI (6.0 M) containing 0.2% (v/v)
phenol and 5 L of octanoic acid at 110 £+ 0.5 °C for periods of
24, 48, 72, and 96 h with the precautions described by
Zarkadas et al. (1988a,c). Analyses of individual acid hydroly-
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sates were performed on the clear filtrate in duplicate accord-
ing to methods described previously (Zarkadas et al., 1986,
1988a—c, 1993, 1994).

Procedures for Amino Acid Analyses. Amino acid analyses
were carried out on a Beckman Spinco Model 121 MB fully
automated amino acid analyzer using single-column methodol-
ogy (Zarkadas et al., 1986, 1987, 1990).

Complete amino acid analyses were carried out on each of
the three replicate maize samples (50.0 mg) per cultivar
according to the standard procedures described previously
(Zarkadas et al., 1986, 1987). Each of the four replicates was
divided into two subsamples, i.e., A and B, which were then
hydrolyzed in duplicate for 24, 48, 72, and 96 h as described
previously (Zarkadas et al., 1988a—c).

Methionine and cyst(e)ine were determined separately (50.0
mg samples) according to the performic acid procedure of
Moore (1963). Norleucine was added in the hydrolysate as an
internal standard. Recoveries of cyst(e)ine as cysteic acid and
methionine as methionine S,S-dioxide were calculated in
proportion to the yields obtained by the performic acid treat-
ment of standard solutions of these amino acids. The data
were then normalized relative to alanine, valine, leucine, and
isoleucine present in the sample and represent the average of
24 determinations.

Tryptophan in maize samples (50.0 mg) was also determined
separately after alkaline hydrolysis (Hugli and Moore, 1972)
on a single column as described previously (Zarkadas et al.,
1986), using 3-nitrotyrosine as the internal standard, and the
data presented in Table 1 represent the average of 24
determinations.

Protein Determination. Recoveries of amino acids were
calculated on the basis of the protein content of individual
hydrolysates determined according to the method of Horst-
mann (1979) as described previously (Zarkadas et al., 1988a—c):

18
WE = Y (ab) (1)
i=1

According to this method, a mean residue weight (WE, in
micrograms per nanomole) is calculated for the amino acids
constituting the proteins in maize; where a is the mole fraction
of an amino acid i found in the analyzed aliquot and 4 is the
molecular weight of amino acid residue i (in micrograms). The
conversion factor CF, which represents the apparent average
residue molecular weight (in micrograms per nanomole) of the
proteins in maize but in the absence of tryptophan, methion-
ine, and cyst(e)ine, and the protein concentration of each
hydrolysate were then calculated as described previously
(Zarkadas et al., 1988a,b, 1994).

The protein content of each sample was calculated by
multiplying CF by the nanomoles of total amino acids (y;) in
each acid hydrolysate as follows:

15
P=CFYy 2
i=1

Predicting Properties of Proteins from Amino Acid Composi-
tions. Previous studies by Khanizadeh et al. (1989) and
Zarkadas et al. (1994) have shown that grouping amino acids
from tissue compositional data into classes with distinct
properties could be partially related to the rather general
properties of the proteins in tissue mixtures. One feature of
protein structure that is fairly reliable is the tendency of the
side chain of charged or very hydrophilic or polar amino acid
residues to be external, to interact strongly with water, and
to have high solubility in water. At the opposite end of the
polarity scale are the apolar or hydrophobic side chains, which
tend to have low solubility in water and therefore will be
internal (Bigelow, 1967; Nozaki and Tanford, 1971). Barrantes
(1973, 1975) has grouped the amino acids into four classes,
total charged, hydrophilic, hydrophobic, and apolar, and simply
compared the ratio (R) of the frequencies of occurrence (y) of
whatever particular side chains of proteins one wishes to
examine, e.g.

Zarkadas et al.
R=u/3s ®
k J

where k can be hydrophilic and j hydrophobic side chains or k&
polar and j nonpolar as defined by Barrantes (1973). [Basic:
histidine + lysine + arginine. Acidic: aspartic acid + glutamic
acid + asparagine + glutamine. Total charged: basic + acidic.
Hydrophilic: total charged + threonine + serine. Hydropho-
bic: valine + methionine + isoleucine + leucine + tyrosine +
phenylalanine + tryptophan. Apolar: hydrophobic ~ tyrosine.
Ratio 1 (R;): hydrophilic/hydrophobic. Ratio 2 (Rg): hydro-
philic/apolar. Ratio 3 (R3): total charged/hydrophobic. Ratio
4 (Ry): total charged/apolar.]

Although the particular choice of amino acid residues used
to construct these ratios is somewhat arbitrary (Barrantes,
1973, 1975), one particular ratio scale that reliably weighs the
tendency of charged or very polar residues to be external is
R;. This ratio is convenient because it spreads different
proteins over a wide scale range, from 0.36 to 2.03, and gives
a measure with more information about the system.

Statistical Analysis. Data processing of the results was
carried out by a FORTRAN computer program developed for
this purpose. Analysis of variance, conducted on the amino
acid data, for a completely randomized block design (factorial)
was carried out by the general linear model procedure (SAS,
1991) and represents the average values from eight sub-
samples per cultivar.

RESULTS AND DISCUSSION

The overall amino acid composition of three new
northern adapted maize cultivars, expressed as grams
of amino acid per kilogram of anhydrous fat- and ash-
free tissue protein, is summarized in Table 1. Although
wide variations in the amino acid composition among
the various cultivars were noted, the least variability,
in seed tissue amino acid content, was found when the
results were expressed on a protein basis. According
to Benedict (1987) and Zarkadas et al. (1988a—c), when
the data are expressed on a protein basis, they reflect
the relative amounts of the amino acids present, since
the influence of both fat and moisture is eliminated. In
addition, the data on amino acid composition on a
protein basis, as presented in Table 1, allow compari-
sons to be made between the present results and those
reported by others, those given in food compositional
tables, and the recommended FAO/WHO/UNU (1985)
and FAO/WHO (1990) reference amino acid patterns for
humans. This method has the added advantage that
the percentage recovery of amino acids by weight or on
a nitrogen basis can be found by simple summation
(Tristram and Smith, 1963; Eastoe, 1967).

An earlier method for expressing amino acid content
was based on grams of amino acid per 16 g of total
nitrogen. This method was first introduced by Block
and Mitchell (1946) for rapid calculation of the amino
acid content of diets in nutritional studies. For purposes
of comparison, the data from this study have been
calculated as recommended by FAO/WHO/UNU (1985)
and FAO/WHO (1990) and are presented in Table 2.

Precise protein determinations of each acid hydroly-
sate were carried out according to the method of
Horstmann (1979) as described previously (Zarkadas et
al., 1988a,b; Khanizadeh et al., 1992), and the results
are summarized in Table 1. This method of calculating
the protein mass in seeds or tissues is based upon
knowledge of their amino acid composition and yields
accurate estimates of the amount of protein present. The
mean residue weight equivalent (WE, micrograms per
nanomole) and conversion factor (CF, micrograms per
nanomole) given in Table 1 were determined using eq
1 and can be used in all subsequent protein quantita-
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tions using eq 2 as described previously by Horstmann
(1979) and Zarkadas et al. (1988a, 1994).

The variation noted in the protein content among the
three maize cultivars evaluated was statistically highly
significant (P < 0.001), with the Flint CO255 being
consistently higher in total protein than either of the
other two maize cultivars. The new QPM-C13 maize
cultivar had approximately the same amount of total
protein (7.95%) as normal Pioneer 3953 maize (8.2%).
These results are in accord with those of Villegas et al.
(1990) and Ortega et al. (1991), who reported a range
from 7.4 to 8.6% for their hard endosperm opaque-2
maize cultivars. However, Kniep and Mason (1991) and
Bjarnason and Vasal (1992) reported higher values
ranging from 8.3 to 9.7% for normal and opague-2 maize.
The differences in total protein content between the
present study and others may be attributed to the
quantitative methods used by these authors for deter-
mining total nitrogen content in maize. Differences
between Kjeldahl nitrogen and nitrogen determined by
the summation of the amino acid nitrogen contents
among various plant or animal tissues have been
reported previously (Zarkadas et al., 1988b; Khanizadeh
et al.,, 1992). These authors indicated that percent
differences as a function of method of nitrogen deter-
mination ranged from 1.86 to 5.40% in soybean protein
products to 30.7 and 36.8% in milk solid nonfat powder
and gluten feed, respectively. Similar variability has
been reported by Heidelbaugh et al. (1975) for Skylab
foods. These results suggest that because the conven-
tional Kjeldahl nitrogen procedure used for the analysis
of total nitrogen in cereals greatly overestimates the
protein content of maize, quantitative amino acid data
should be the preferred method for assessing both the
total protein and the protein quality of the new maize
genotypes under investigation.

The data presented in Table 1 indicate that total
protein in Dent C0215 was 10.5% and in Flint CO255
was 11.8% in contrast to the commercial Dent Pioneer
3953 with 8.2%. This represents an increase of 28% in
protein of the Dent CO251 inbred and 43% in the Flint
CO255 inbred compared to the normal maize hybrid,
Pioneer 3953, corresponding to increases of 2.3 and 3.6
g of protein/100 g of dry mass for the Dent CO251 and
Flint CO255 maize cultivars, respectively. The results
show that this increase in total protein content was not
accompanied by increased protein quality.

The data reported on the total nitrogen and protein
contents of the four maize cultivars in Tables 1 and 2
have been calculated according to the method recom-
mended by Heidelbaugh et al. (1975) and Horstmann
(1979). The total amino acid nitrogen of these samples
ranged from 12.8 to 17.9 g of amino acid nitrogen/kg of
dry mass. The endosperm of both Flint CO255 and
Dent CO251 cultivars contained a significantly higher
(P < 0.001) concentration of nitrogen (from 1.65 to 1.8%)
compared to those found in the QPM-C13 (1.36%) and
Pioneer 3953 maize (1.28%). These data compare
favorably with those of Ortega et al. (1991) but were
lower than those of Kniep and Mason (1991).

A comparison of the amino acid profiles of the maize
cultivars, as presented in Table 1, shows that three of
these four cultivars, i.e., the normal endosperm Dent
C0251 and Flint CO255 cultivars and the Pioneer 3953
tester, were very similar in amino acid composition. All
three were high in several amino acids, namely glutamic
acid (20.7—21.5% of the total amino acids), leucine
(14.6%), proline (8.0—10.0%), alanine (7.8—8.5%), phen-
ylalanine (5.3—5.6%), valine (4.1—4.9%), and aspartic
acid (4.6—5.6%). Thus, these seven account for 67—69%
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of the total amino acids. The total basic amino acids,
which include lysine, histidine, and arginine, constituted
only 7.5—8.1% of the total amino acids. These values
are considerably lower than the acidic amino acids,
which represent 25% of the total amino acid residues.
The rarest amino acid residues in these three maize
cultivars were lysine (1.70—1.98%), tryptophan (0.6—
0.8%), and methionine, which accounted for a further
1.7-2.1% of the total amino acid residues. These results
were close to those reported by Nelson et al. (1965) for
normal maize.

In contrast, the QPM-C13 cultivar has an overall
amino acid profile that was very different from the other
three cultivars investigated in this study. Amino acid
content was found to be highly significantly different
for each amino acid analyzed, i.e., QPM-C13 versus
Dent CO251, Flint CO255, and Pioneer 3953, except for
serine and proline (Table 1). Of particular note were
the increased levels of lysine and tryptophan in QPM-
C13 genotype. Lysine and tryptophan variations were
statistically highly significant (P > 0.001). QPM-C13
contained 3.98 g of lysine and 1.21 g of tryptophan per
100 g of protein, in accord with the findings of Paiva et
al. (1991). These results are also similar to the values
presented for lysine by Kniep and Mason (1991), who
reported a range from 4.1 to 4.3% for short- and long-
season opaque-2 maize, respectively. By contrast, the
lysine values found among the other three hybrids
ranged from 1.77 g/100 g of protein in normal Flint
CO0255 to 1.99 g/100 g in normal yellow Dent CO251
compared to 1.82 g/100 g of protein found in the
commercial tester hybrid, Pioneer 3953.

There were other accompanying changes in the pro-
portions of amino acids in QPM-C13, which are in accord
with the type of modifications reported in the amino acid
profiles of opaque-2, floury-2, opaque-6, opaque-7, and
mucronate high-lysine mutants (Nelson et al., 1965;
Misra et al.,, 1972, 1975a,b; Ma and Nelson, 1975;
Salamini et al., 1983; Glover and Mertz, 1987). In
addition to lysine and tryptophan, the contents of
arginine, histidine, aspartic acid, glycine, and cyst(e)ine
increased in QPM-C13 while the levels of glutamic acid,
alanine, leucine, tyrosine, and phenylalanine decreased
sharply, compared to normal maize varieties. The data
presented in Tables 1 and 2 suggest a preferential
accumulation of certain amino acids in the kernels of
these four cultivars. These data also indicate a highly
significant increase (P > 0.0001) in basic and total
charge (P < 0.001) amino acids in the Rj3 ratio (Bar-
rantes, 1973, 1975) and a decrease in hydrophobicity of
the storage proteins in QPM-C13, compared to Pioneer
3953, and the normal Dent C0251 and Flint CO255
cultivars. These results suggest that the observed
decrease in hydrophobicity reflects the structural changes
that occur in the subunit composition of the QPM-C13
storage proteins as a result of differential gene expres-
sion that determine protein transformation patterns
(Goldberg, 1986) in the seeds of this new cultivars.

QPM maize, which combined the opaque-2 genes with
genetic modifiers, yields high levels of lysine and
tryptophan and has a kernel hardness and appearance
similar to normal maize. According to Ortega and Bates
(1983) and Ortega et al. (1986, 1991), the opaque-2 gene
present in QPM hybrids partially inhibits zein synthe-
sis. This is then accompanied by proportional increases
in other protein fractions, i.e., albumins, globulins,
glutelins, and free amino acids (Misra et al., 1975b), so
that the endosperm protein in QPM maize has about
double the lysine and tryptophan content of normal
endosperm maize.
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The results in Tables 1 and 2 showed that the
amounts of cysteine and histidine present in QPM-C13
were 70—80% more than the amount found in normal
maize varieties, i.e., Pioneer 3953. Wallace et al. (1990)
presented data showing that QPM contained 2—4 times
more y-zein than normal maize varieties or opaque-2
and floury-2 genotypes. Paiva et al. (1991) and Lopes
and Larkins (1991) have indicated that both soft and
hard regions of QPM endosperm are enriched in y-zein
and that both a- and $-zeins are significantly reduced
in QPM cultivars. Sequence studies have shown that
y-zein contained 7% cysteine and 7% histidine (Shewry
and Tatham, 1990), which might explain the results in
the present study. Thus, on the basis of the finding that
the y-zein genes isolated from normal maize do not code
for any lysine or tryptophan (Prat et al., 1985; Wang
and Essen, 1986), the high lysine and tryptophan
content found in QPM-C13 cannot be explained by the
increase in y-zein. According to Paiva et al. (1991), the
only function of y-zein might be in disulfide bond
formations and interactions that influence kernel hard-
ness in the QPM genotypes. Since zeins contain no
lysine or tryptophan (Nelson et al., 1965; Shewry and
Tatham, 1990), the increase in lysine and tryptophan
as percentage of total protein in QPM maize reflects a
higher proportion of other protein fractions, i.e., albu-
mins, globulins, glutelins, etc., which have markedly
higher lysine contents.

Table 3 compares the essential amino acid (EAA)
compositions of QPM-C13 and two typical hard en-
dosperm Dent CO251 and Flint CO255 inbreds with a
commercial hybrid tester, Pioneer 3953. Comparison
of the EAA patterns (milligrams per gram of dietary
nitrogen) indicates that these maize cultivars contain
significant amounts of EAA required for both human
and animal nutrition (Block and Mitchell, 1946; Oser,
1951; FAO/WHO, 1965), with lysine, tryptophan, and
threonine as the major limiting amino acids.

However, as these predictive tests fail to take into
account differences in the digestibility and availability
of individual amino acids, the FAO/WHO/UNU Expert
Consultation Group (FAO/WHO/UNU, 1985; FAO/
WHO, 1990) and the Expert Work Group (FSIS, 1984)
recommended that an amino acid score, based on the
amino acid composition and corrected for true digest-
ibility of protein or bicavailability of amino acids, should
be the preferred method for assessing protein quality
of plant and animal proteins. They also recommended
that the use of the reference amino acid pattern for the
2—5-year-old child be used in the evaluation of foods
for all persons except infants. This amino acid scoring
method is based on the nine essential amino acids
(EAAy) required for humans: histidine, isoleucine,
leucine, lysine, methionine and cyst(e)ine, phenylala-
nine and tyrosine, threonine, tryptophan, and valine.

The results presented in Table 3 indicate that the
QPM-C13 maize protein proved to be of higher quality
than common maize proteins because it contained
double the amount of lysine and arginine, higher levels
of tryptophan, cysteine, and threonine, and no change
in other amino acids except lower levels of leucine and
isoleucine, which are known to influence the efficiency
of protein utilization. It should be noted that although
lysine averaged 39.78 mg/g of QPM-C13 proteins, which
is considerably higher than in other cereals, it is still
below the recommended FAO/WHO (1990) reference
lysine standard value of 58 mg/g of dietary protein for
the 2—5-year-old child (Table 3). As a result, the QPM-
C13 amino acid profile gives a good balance of total
essential amino acids, limited only in lysine, and has
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an amino acid score, adjusted for digestibility, of 67%,
compared to 28.5, 31.0, and 33.0% values found for
Pioneer 3953, Dent CO251, and Flint CO255, respec-
tively. The large difference in the adjusted amino acid
scores between common maize cultivars and QPM-C13
is attributed to their low lysine and tryptophan values
(Table 3), which ranged from 17 to 20 and from 6 to 8
mg of amino acid/g of total protein, respectively. Thus,
in common maize the primary essential amino acid
deficiencies include lysine, tryptophan, and threonine.
However, from early nutritional studies with rats,
Benton et al. (1955) have shown that the other limiting
amino acid in common maize after lysine and tryp-
tophan is isoleucine. These authors have indicated that
although common maize is not deficient in either
isoleucine or threonine, the presence of large amounts
of leucine in diets of zein or maize has caused amino
acid imbalances in rats and interferred with their
absorption and utilization of isoleucine (Harper et al.,
1955; Benton et al., 1956). It has also been reported
that high consumption of leucine along with the protein
in maize increases niacin requirements and that this
amino acid could be partly responsible for the develop-
ment of pellagra in humans fed primarily maize (FAO,
1992). In the present studies the ratio of leucine/
isoleucine found in QPM-C13 was only 2.5 compared to
3.62, 3.70, and 3.70 found in Pioneer 3953, Dent CO251,
and Flint CO255, respectively, suggesting that the
QPM-C13 proteins provide an even better essential
amino acid balance than is indicated from the calculated
amino acid profile.

These results indicate that breeding maize for high
protein quality can be very effective and that a very
useful method for evaluating the protein quality of
cereals is calculating their protein quality from their
amino acid composition.
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